koawa:t

The Ultimate Playbook for
Scaling High-Performance
Remote Engineering Teams

A step-by-step guide to help your remote team cut noise, share
knowledge and deliver consistently.

Remote engineering
teams look busy — but
struggle to deliver

Your team looks busy. Slack is buzzing,
meetings stack up, and tools are full of
activity.

But delivery tells a different story —
features slip, onboarding drags, and
momentum stalls.

Why this matters:

» Slower delivery - customers wait, competitors move faster
» Frustrated engineers -» morale drops, turnover risk increases
» Scaling risk -» adding more people only multiplies the chaos

Our perspective:

At kommit, we’ve spent 16 years running fully remote engineering teams.
Along the way, we've tested systems, tools, and rituals that turned
scattered effort into consistent output.

In fact, with these practices, we’ve cut onboarding for new engineers from
weeks to just 2 days.

This playbook distills those lessons into practical frameworks you can apply today:

1. Knowledge sharing that sticks —» stop relying on “head-knowledge” and make docs visible
2. Asynchronous work that actually works —» keep work flowing without endless syncs

3. Building trust without micromanaging — give clarity, not control

4. Security that doesn’t kill speed — protect your systems without slowing delivery

5. Mini Audit: Are you remote-ready? -» benchmark your team in 10 quick questions

01.

Knowledge
sharing that

= Head-Knowledge: Slow Onboarding:
St I C ks Critical processes live in the \L New hires spend weeks asking
minds of a few key people. basic questions instead of
Scattered and Stale: shipping code.
_______________________________ Docs are outdated and spread

/> across Google Drive, Slack,

and Jira. —/

The Knowledge Bottleneck

The goal isn’'t to write more. It’s to make critical knowledge accessible, consistent, and visible
to everyone.

01.

Knowledge
sharing that
sticks

4 Rules for Effective Team Knowledge Management

Create a Central "Engineering Hub" Document As You Work (Link PRs to Docs)
Rule #3: Rule #4:
Appoint a "Garden Keeper” Public Q8A > Private DMs

0 1 = Your 15-Minute Challenge: The "Quick Win" Doc

Knowledge

1. Choose one repetitive task: Pick a simple, recurring process everyone

S h a r I n g t h a t asks about. (e.g., "How to connect to the VPN" or "How to set up the local

t ; k environment").
S I C s 2. Record, don’t write: Open Loom or a screen recorder. Record yourself
doing the task, explaining the steps as you go. Keep it under 5 minutes.

3. Post and title it clearly: Upload the video to your new “Engineering Hub"
with a clear, searchable title.

4. Announce it: Post the link in your main developer channel and say, "The
official guide for [Task Name] is now here. Please use this as the single
source of truth moving forward.”

The Result:
You've just saved your team hours of repeated questions — and freed up
your senior devs to ship.

02.

Asynchronous
work that

actually works

» Slow responses: Messages pile up with no clear expectation of when to answer.
o Context lost: Key decisions happen in chats and vanish in the noise.
» Meeting creep: Without structure, async turns back into endless syncs.

Asynchronous
work that

actually works

Define Response Windows (e.g., Default to Writing (tasks, PRs, RFCs, docs
within 24h on working days) before meetings)

Rule #3: Rule #4:

Use Loom for Speed (Two minutes Async Daily Check-Ins (2-3 bullets:

beats a 30-minute call) Done, Next, Blocked)

0 2 m Your 15-Minute Challenge: The Weekly Scope Ritual

Asynchronous
Wo r k t h a t Try this simple async planning flow — the same one we use at kommit every

week:

a Ct u a I I y Wo r ks a. Set the scope: Write down the deliverables for the current week.

b. Preview next week: Add what’s coming next so the team sees the
roadmap (add tasks that truly move the needle).

c. Share publicly: Post the scope in your main dev channel or task board.

d. Review together: End the week by checking progress against the scope
and adjusting.

The Result:

Your team gets a clear push each week, knows exactly what matters, and
avoids wasting hours aligning in endless meetings.

03.

Building trust
WlthOUt Too Much or Too Little Control
m i C ro m a n a g i n g * Micromanagement: Leaders hover over every task, slowing developers down.

 Blind trust: On the other hand, devs are left guessing.
» Unclear ownership: Work stalls because no one knows who's responsible.

Trust isn't about total freedom or constant oversight — it's about clarity.

When expectations and visibility are clear, leaders step back and teams step up.

Building trust
-
without

micromanaging res ol #2

Define “What Good Looks Like” Visibility Over Reporting (keep work visible
(clarify deliverables and quality in task boards, not in private check-ins)
upfront)

Rule #3: Rule #4:

Redesign Daily Standups (short, Give Feedback Early (small, frequent
focused on blockers, not corrections build more trust than late

micromanaging tasks) surprises)

03.

B U | | d | N g trust Your 15-Minute Challenge: The Ownership Map

without o
. Pick one active project.
i i 2. List 3-5 deliverables for this week.
m I C ro m a n a g I n g 3. Assign a single owner for each deliverable.

4. Share it publicly in your dev channel or tracker.

The Result:
Your team knows who owns what, blockers surface quickly, and leaders do

not need to hover. Trust is built through clarity, not control.

04.

S ecur | ty T 2 at Remote Work Increases Risk
g n
doesn’t kill I . N
» Lingering access: Former devs still have repo or server permissions.
S p e e d » Password chaos: Credentials live in random chats or spreadsheets.

» 2FA blindspots: Some tools are protected, others wide open.

Security shouldn’'t slow your team down. With lightweight guardrails, you
can keep systems safe while engineers stay productive.

Security that

doesn’t kill
Speed Rule #1: Rule #2:

Enforce a Password Manager Role-Based Access (grant only what’s
(1Password, Bitwarden — no more needed, review monthly)
shared spreadsheets)

Rule #3: Rule #4:
Mandatory 2FA (all repos, all tools, Fast Offboarding (one checklist to
no exceptions) revoke access in under 10 minutes)

04.

SeC U rlty T h at Your 15-Minute Challenge: The Access Audit
doesn’t kill

1. Open one dev platform or knowledge hub (Drive, Notion, Asana).
s e e d 2. List all current users with access.
p 3. Check: Does everyone still work here?

4. Revoke at least one outdated access right today.

The Result:
You've closed a real security gap in minutes — and built a habit of
protecting your team without slowing delivery.

Mini Audit - Are
you remote-
ready?

. Knowledge and Onboarding

« Can anew dev ship code within their first 5 days?
- Does all critical knowledge live in one central hub (not scattered in Slack or
Google Drive)?

. Async and Flow

« Do you have a clear rule for response times on async messages?
« Does your team share weekly scopes without endless meetings?

. Trust and Ownership

« Is every deliverable assigned to one clear owner?
Do daily stand-ups stay under 10 minutes and focus on blockers?

. Security and Access

« Areall your critical platforms protected by 2FA?
« Can you revoke a departing dev’s access in under 10 minutes?

. Alignment and Planning

« Does your team start each week with a clear scope of deliverables?
- Does everyone know what the next priority is without asking the leader?

Scoring yourself:
e 8-10 “yes” answers: Your team is remote-ready — refine, don’t rebuild.
» 5-7 “yes” answers: You're functioning, but friction is slowing you down.
» Fewer than 5 “yes” answers: Your team feels busy — but struggles to stay
productive where it matters.

Ready to fix remote friction?

We’ve been fully remote for 16 years — not just experimenting,
but delivering. Our teams already know how to ship in
distributed environments.

This playbook captures several rules we follow every day — and
if you're ready, you can tap into that expertise directly with
kommit.

If your audit showed more 'no’ than ‘yes,’ don't try to fix it
alone. kommit gives you instant access to engineering teams
that already know how to deliver in fully remote environments.

Contactus!

info@kommit.co

mailto:info@kommit.co

KoawA:t

Effective Software Engineering,
Check.

iInfo@kommit.co

mailto:info@kommit.co

