
The for
Scaling High-Performance

Remote Engineering Teams

Ultimate Playbook

A step-by-step guide to help your remote team cut noise, share
knowledge and deliver consistently.

Why this matters:

Our perspective:

Your team looks busy. Slack is buzzing,
meetings stack up, and tools are full of
activity.

But delivery tells a different story —
features slip, onboarding drags, and
momentum stalls.

Remote engineering
teams look busy — but
struggle to deliver

Slower delivery → customers wait, competitors move faster

Frustrated engineers → morale drops, turnover risk increases

Scaling risk → adding more people only multiplies the chaos

At kommit, we’ve spent 16 years running fully remote engineering teams.
Along the way, we’ve tested systems, tools, and rituals that turned
scattered effort into consistent output.

In fact, with these practices, we’ve cut onboarding for new engineers from
weeks to just 2 days.

This playbook distills those lessons into practical frameworks you can apply today:

Knowledge sharing that sticks → stop relying on “head-knowledge” and make docs visible 

Asynchronous work that actually works → keep work flowing without endless syncs 

Building trust without micromanaging → give clarity, not control 

Security that doesn’t kill speed → protect your systems without slowing delivery 

Mini Audit: Are you remote-ready? → benchmark your team in 10 quick questions

01.

Knowledge
sharing that
sticks Head-Knowledge:

Critical processes live in the
minds of a few key people.

Slow Onboarding:

New hires spend weeks asking
basic questions instead of
shipping code.Scattered and Stale: 

Docs are outdated and spread
across Google Drive, Slack,
and Jira.

The goal isn't to write more. It's to make critical knowledge accessible, consistent, and visible
to everyone.

The Knowledge Bottleneck

01.

Knowledge
sharing that
sticks Rule #1:

Create a Central "Engineering Hub"

Rule #3:

Appoint a "Garden Keeper"

Rule #4:

Public Q&A > Private DMs

Rule #2:

Document As You Work (Link PRs to Docs)

4 Rules for Effective Team Knowledge Management

01.

Knowledge
sharing that
sticks

Choose one repetitive task: Pick a simple, recurring process everyone
asks about. (e.g., "How to connect to the VPN" or "How to set up the local
environment"). 

Record, don't write: Open Loom or a screen recorder. Record yourself
doing the task, explaining the steps as you go. Keep it under 5 minutes. 

Post and title it clearly: Upload the video to your new "Engineering Hub"
with a clear, searchable title. 

Announce it: Post the link in your main developer channel and say, "The
official guide for [Task Name] is now here. Please use this as the single
source of truth moving forward."

The Result:

You’ve just saved your team hours of repeated questions — and freed up
your senior devs to ship.

Your 15-Minute Challenge: The "Quick Win" Doc

02.

Asynchronous
work that
actually works

Slow responses: Messages pile up with no clear expectation of when to answer.

Context lost: Key decisions happen in chats and vanish in the noise.

Meeting creep: Without structure, async turns back into endless syncs.

Async ≠ Absent

02.

Asynchronous
work that
actually works

4 Rules for Async That Works

Rule #1:  
Define Response Windows (e.g.,
within 24h on working days)

Rule #3:

Use Loom for Speed (Two minutes
beats a 30-minute call) 

Rule #4:

Async Daily Check-Ins (2–3 bullets:
Done, Next, Blocked)

Rule #2:

Default to Writing (tasks, PRs, RFCs, docs
before meetings)

Try this simple async planning flow — the same one we use at kommit every
week: 

Set the scope: Write down the deliverables for the current week. 

Preview next week: Add what’s coming next so the team sees the
roadmap (add tasks that truly move the needle). 

Share publicly: Post the scope in your main dev channel or task board. 

Review together: End the week by checking progress against the scope
and adjusting.
 

The Result: 
Your team gets a clear push each week, knows exactly what matters, and
avoids wasting hours aligning in endless meetings.

02.

Asynchronous
work that
actually works

Your 15-Minute Challenge: The Weekly Scope Ritual

Micromanagement: Leaders hover over every task, slowing developers down.

Blind trust: On the other hand, devs are left guessing.

Unclear ownership: Work stalls because no one knows who’s responsible.

Trust isn’t about total freedom or constant oversight — it’s about clarity.
 

When expectations and visibility are clear, leaders step back and teams step up.

Too Much or Too Little Control

03.

Building trust
without
micromanaging

03.

Building trust
without
micromanaging

4 Rules for Trust That Scales

Rule #1:

Define “What Good Looks Like”
(clarify deliverables and quality
upfront) 

Rule #3:

Redesign Daily Standups (short,
focused on blockers, not
micromanaging tasks) 

Rule #4:

Give Feedback Early (small, frequent
corrections build more trust than late
surprises)

Rule #2:

Visibility Over Reporting (keep work visible
in task boards, not in private check-ins)

03.

Building trust
without
micromanaging

Pick one active project.

List 3–5 deliverables for this week.

Assign a single owner for each deliverable.

Share it publicly in your dev channel or tracker.

The Result: 

Your team knows who owns what, blockers surface quickly, and leaders do

not need to hover. Trust is built through clarity, not control.

Your 15-Minute Challenge: The Ownership Map

04.

Security that
doesn’t kill
speed

Lingering access: Former devs still have repo or server permissions.

Password chaos: Credentials live in random chats or spreadsheets.

2FA blindspots: Some tools are protected, others wide open.

Security shouldn’t slow your team down. With lightweight guardrails, you

can keep systems safe while engineers stay productive.

Remote Work Increases Risk

04.

Security that
doesn’t kill
speed

4 Rules for Secure Access Management

Rule #1:

Enforce a Password Manager
(1Password, Bitwarden — no more
shared spreadsheets)

Rule #3:

Mandatory 2FA (all repos, all tools,
no exceptions)

Rule #4:

Fast Offboarding (one checklist to
revoke access in under 10 minutes)

Rule #2:

Role-Based Access (grant only what’s
needed, review monthly) 

04.

Security that
doesn’t kill
speed

Open one dev platform or knowledge hub (Drive, Notion, Asana).

List all current users with access.

Check: Does everyone still work here?

Revoke at least one outdated access right today.
 

The Result: 
You’ve closed a real security gap in minutes — and built a habit of
protecting your team without slowing delivery.

Your 15-Minute Challenge: The Access Audit

05.

Mini Audit – Are
you remote-
ready?

Knowledge and Onboarding

Can a new dev ship code within their first 5 days?

Does all critical knowledge live in one central hub (not scattered in Slack or
Google Drive)? 

Async and Flow

Do you have a clear rule for response times on async messages?

Does your team share weekly scopes without endless meetings? 

Trust and Ownership

Is every deliverable assigned to one clear owner?

Do daily stand-ups stay under 10 minutes and focus on blockers? 

Security and Access

Are all your critical platforms protected by 2FA?

Can you revoke a departing dev’s access in under 10 minutes? 

Alignment and Planning

Does your team start each week with a clear scope of deliverables?

Does everyone know what the next priority is without asking the leader? 

Scoring yourself:

8–10 “yes” answers: Your team is remote-ready — refine, don’t rebuild.

5–7 “yes” answers: You’re functioning, but friction is slowing you down.

Fewer than 5 “yes” answers: Your team feels busy — but struggles to stay
productive where it matters.

Ready to fix remote friction?
We’ve been fully remote for 16 years — not just experimenting,
but delivering. Our teams already know how to ship in
distributed environments.

If your audit showed more ‘no’ than ‘yes,’ don’t try to fix it
alone. kommit gives you instant access to engineering teams
that already know how to deliver in fully remote environments.

This playbook captures several rules we follow every day — and
if you’re ready, you can tap into that expertise directly with
kommit. 

Contact us!

info@kommit.co

mailto:info@kommit.co

info@kommit.co

Effective Software Engineering,

Check.

mailto:info@kommit.co

